Обучение слоя Кохонена: нормализация входных данных
Начальным (но не обязательным) этапом процесса обучения нейронной сети Кохонена является предварительная нормализация входных векторов. Это достигается за счет деления […]
Начальным (но не обязательным) этапом процесса обучения нейронной сети Кохонена является предварительная нормализация входных векторов. Это достигается за счет деления […]
Самым важным свойством нейронных сетей является их способность обучаться на основе данных окружающей среды и в результате обучения повышать свою
Алгоритм обратного распространения ошибки является одним из методов обучения многослойных нейронных сетей прямого распространения. Сегодня нейронные сети успешно используются при
Нейрон представляет собой единицу обработки информации в нейронной сети. На рисунке ниже приведена модель нейрона, лежащего в основе искусственных нейронных
Нейронные сети являются одним из направлений искусственного интеллекта, которые часто используются при решении задач оптимизации и распознавания образов. Уже разработано
В процессе обучения многослойного персептрона с применением алгоритма обратного распространения ошибки ему многократно предъявляется предопределенное множество обучающих примеров. Один полный
Для того, чтобы определиться с условными обозначениями, приведем ниже следующую модель нейрона: Функция активации (активационная функция, функция возбуждения) – функция,
Вероятно, архитектура многослойных нейронных сетей используется сейчас наиболее часто. Она была предложена еще в работах Розенблатта и подробно обсуждается почти
Исследования по искусственным нейронным сетям связаны с тем, что способ обработки информации человеческим мозгом в корне отличается от методов, применяемых
Многослойными персептронами называют нейронные сети прямого распространения. Входной сигнал в таких сетях распространяется в прямом направлении, от слоя к слою.
Совершенно очевидно, что свою силу нейронные сети черпают, во-первых, из распараллеливания обработки информации и, во-вторых, из способности самообучаться, т.е. создавать
Многослойные нейронные сети прямого распространения, для обучения которых, как правило, применяется алгоритм обратного распространения ошибки, можно охарактеризовать как базовые нейронные