Модель нейрона

Нейрон представляет собой единицу обработки информации в нейронной сети. На рисунке ниже приведена модель нейрона, лежащего в основе искусственных нейронных сетей.

Модель нейрона

В этой модели нейрона можно выделить три основных элемента:

  • синапсы, каждый из которых характеризуется своим весом или силой. Осуществляют связь между нейронами, умножают входной сигнал x_{i} на весовой коэффициент синапса w_{i}, характеризующий силу синаптической связи;
  • сумматор, аналог тела клетки нейрона. Выполняет сложение внешних входных сигналов или сигналов, поступающих по синаптическим связям от других нейронов. Определяет уровень возбуждения нейрона;
  • функция активации, определяет окончательный выходной уровень нейрона, с которым сигнал возбуждения (торможения) поступает на синапсы следующих нейронов.

Модель нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, пропорциональный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона.

Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта модель нейрона. Здесь множество входных сигналов, обозначенных x_{1},x_{2},...x_{N} поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором X, соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес w_{1},w_{2},...,w_{N} и поступает на суммирующий блок, обозначенный Sigma. Каждый вес соответствует «силе» одной биологической синаптической связи. Множество весов в совокупности обозначается вектором W. Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход Y. Далее Y поступает на вход функции активации, определяя окончательный сигнал возбуждения или торможения нейрона на выходе. Этот сигнал поступает на синапсы следующих нейронов и т. д.

Рассмотренная простая модель нейрона игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И, что более важно, данная модель нейрона не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими.

Несмотря на эти ограничения, сети, построенные на основе этой модели нейрона, обнаруживают свойства, сильно напоминающие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпадения случайными или следствием того, что именно в этой модели нейрона верно схвачены важнейшие черты биологического прототипа.

Это интересно

Смотрите также