Преимущества нейронных сетей

Совершенно очевидно, что свою силу нейронные сети черпают, во-первых, из распараллеливания обработки информации и, во-вторых, из способности самообучаться, т.е. создавать обобщения. Под термином обобщение понимается способность получать обоснованный результат на основании данных, которые не встречались в процессе обучения. Эти свойства позволяют нейронным сетям решать сложные (масштабные) задачи, которые на сегодняшний день считаются трудноразрешимыми. Однако на практике при автономной работе нейронные сети не могут обеспечить готовые решения. Их необходимо интегрировать в сложные системы. В частности, комплексную задачу можно разбить на последовательность относительно простых, часть из которых может решаться нейронными сетями.

Итак, приведем некоторые преимущества и достоинства нейронных сетей перед традиционными вычислительными системами.

1. Решение задач при неизвестных закономерностях

Используя способность обучения на множестве примеров, нейронная сеть способная решать задачи, в которых неизвестны закономерности развития ситуации и зависимости между входными и выходными данными. Традиционные математические методы и экспертные системы в таких случаях пасуют.

2. Устойчивость к шумам во входных данных

Возможность работы при наличии большого числа неинформативных, шумовых входных сигналов. Нет необходимости делать их предварительный отсев, нейронная сеть сама определит их малопригодность для решения задачи и отбросит их.

3. Адаптирование к изменениям окружающей среды

Нейронные сети обладают способностью адаптироваться к изменениям окружающей среды. В частности, нейронные сети, обученные действовать в определенной среде, могут быть легко переучены для работы в условиях незначительных колебаний параметров среды. Более того, для работы в нестационарной среде (где статистика изменяется с течением времени) могут быть созданы нейронные сети, переучивающиеся в реальном времени. Чем выше адаптивные способности системы, тем более устойчивой будет ее работа в нестационарной среде. При этом следует заметить, что адаптивность не всегда ведет к устойчивости; иногда она приводит к совершенно противоположному результату. Например, адаптивная система с параметрами, быстро изменяющимися во времени, может также быстро реагировать и на посторонние возбуждения, что вызовет потерю производительности. Для того чтобы использовать все достоинства адаптивности, основные параметры системы должны быть достаточно стабильными, чтобы можно было не учитывать внешние помехи, и достаточно гибкими, чтобы обеспечить реакцию на существенные изменения среды.

4. Потенциальное сверхвысокое быстродействие

Нейронные сети обладают потенциальным сверхвысоким быстродействием за счет использования массового параллелизма обработки информации.

5. Отказоустойчивость при аппаратной реализации нейронной сети

Нейронные сети потенциально отказоустойчивы. Это значит, что при неблагоприятных условиях их производительность падает незначительно. Например, если поврежден какой-то нейрон или его связи, извлечение запомненной информации затрудняется. Однако, принимая в расчет распределенный характер хранения информации в нейронной сети, можно утверждать, что только серьезные повреждения структуры нейронной сети существенно повлияют на ее работоспособность. Поэтому снижение качества работы нейронной сети происходит медленно.

Это интересно

Смотрите также